extension | φ:Q→Aut N | d | ρ | Label | ID |
C32.1(C32⋊C6) = C92⋊S3 | φ: C32⋊C6/C32 → S3 ⊆ Aut C32 | 27 | 6+ | C3^2.1(C3^2:C6) | 486,36 |
C32.2(C32⋊C6) = C92.S3 | φ: C32⋊C6/C32 → S3 ⊆ Aut C32 | 27 | 6+ | C3^2.2(C3^2:C6) | 486,38 |
C32.3(C32⋊C6) = C9⋊C9.S3 | φ: C32⋊C6/C32 → S3 ⊆ Aut C32 | 27 | 18+ | C3^2.3(C3^2:C6) | 486,39 |
C32.4(C32⋊C6) = C9⋊C9.3S3 | φ: C32⋊C6/C32 → S3 ⊆ Aut C32 | 27 | 18+ | C3^2.4(C3^2:C6) | 486,40 |
C32.5(C32⋊C6) = C9⋊C9⋊S3 | φ: C32⋊C6/C32 → S3 ⊆ Aut C32 | 27 | 18+ | C3^2.5(C3^2:C6) | 486,41 |
C32.6(C32⋊C6) = C34.S3 | φ: C32⋊C6/C32 → S3 ⊆ Aut C32 | 27 | | C3^2.6(C3^2:C6) | 486,105 |
C32.7(C32⋊C6) = (C3×He3)⋊C6 | φ: C32⋊C6/C32 → S3 ⊆ Aut C32 | 27 | 18+ | C3^2.7(C3^2:C6) | 486,127 |
C32.8(C32⋊C6) = C9⋊S3⋊C32 | φ: C32⋊C6/C32 → S3 ⊆ Aut C32 | 27 | 18+ | C3^2.8(C3^2:C6) | 486,129 |
C32.9(C32⋊C6) = He3.(C3×S3) | φ: C32⋊C6/C32 → S3 ⊆ Aut C32 | 27 | 18+ | C3^2.9(C3^2:C6) | 486,131 |
C32.10(C32⋊C6) = (C32×C9)⋊8S3 | φ: C32⋊C6/C32 → S3 ⊆ Aut C32 | 54 | 6 | C3^2.10(C3^2:C6) | 486,150 |
C32.11(C32⋊C6) = C34⋊5S3 | φ: C32⋊C6/C32 → S3 ⊆ Aut C32 | 18 | 6 | C3^2.11(C3^2:C6) | 486,166 |
C32.12(C32⋊C6) = He3.C3⋊S3 | φ: C32⋊C6/C32 → S3 ⊆ Aut C32 | 54 | 6 | C3^2.12(C3^2:C6) | 486,169 |
C32.13(C32⋊C6) = He3⋊C3⋊2S3 | φ: C32⋊C6/C32 → S3 ⊆ Aut C32 | 54 | 6 | C3^2.13(C3^2:C6) | 486,172 |
C32.14(C32⋊C6) = C92⋊C6 | φ: C32⋊C6/C32 → C6 ⊆ Aut C32 | 27 | 6+ | C3^2.14(C3^2:C6) | 486,35 |
C32.15(C32⋊C6) = C92⋊2C6 | φ: C32⋊C6/C32 → C6 ⊆ Aut C32 | 27 | 6+ | C3^2.15(C3^2:C6) | 486,37 |
C32.16(C32⋊C6) = (C32×C9)⋊C6 | φ: C32⋊C6/C32 → C6 ⊆ Aut C32 | 81 | | C3^2.16(C3^2:C6) | 486,151 |
C32.17(C32⋊C6) = C34⋊5C6 | φ: C32⋊C6/C32 → C6 ⊆ Aut C32 | 27 | | C3^2.17(C3^2:C6) | 486,167 |
C32.18(C32⋊C6) = C32⋊4D9⋊C3 | φ: C32⋊C6/C32 → C6 ⊆ Aut C32 | 81 | | C3^2.18(C3^2:C6) | 486,170 |
C32.19(C32⋊C6) = He3⋊C3⋊3S3 | φ: C32⋊C6/C32 → C6 ⊆ Aut C32 | 81 | | C3^2.19(C3^2:C6) | 486,173 |
C32.20(C32⋊C6) = C34.C6 | φ: C32⋊C6/C3⋊S3 → C3 ⊆ Aut C32 | 18 | 6 | C3^2.20(C3^2:C6) | 486,104 |
C32.21(C32⋊C6) = C3≀C3⋊C6 | φ: C32⋊C6/C3⋊S3 → C3 ⊆ Aut C32 | 27 | 9 | C3^2.21(C3^2:C6) | 486,126 |
C32.22(C32⋊C6) = He3.C3⋊C6 | φ: C32⋊C6/C3⋊S3 → C3 ⊆ Aut C32 | 27 | 9 | C3^2.22(C3^2:C6) | 486,128 |
C32.23(C32⋊C6) = He3.(C3×C6) | φ: C32⋊C6/C3⋊S3 → C3 ⊆ Aut C32 | 27 | 9 | C3^2.23(C3^2:C6) | 486,130 |
C32.24(C32⋊C6) = C9⋊S3⋊C9 | φ: C32⋊C6/He3 → C2 ⊆ Aut C32 | 54 | | C3^2.24(C3^2:C6) | 486,3 |
C32.25(C32⋊C6) = C3.C3≀S3 | φ: C32⋊C6/He3 → C2 ⊆ Aut C32 | 54 | 6 | C3^2.25(C3^2:C6) | 486,4 |
C32.26(C32⋊C6) = C32⋊C9.S3 | φ: C32⋊C6/He3 → C2 ⊆ Aut C32 | 18 | 6 | C3^2.26(C3^2:C6) | 486,5 |
C32.27(C32⋊C6) = C32⋊C9⋊C6 | φ: C32⋊C6/He3 → C2 ⊆ Aut C32 | 18 | 6 | C3^2.27(C3^2:C6) | 486,6 |
C32.28(C32⋊C6) = C32⋊C9⋊S3 | φ: C32⋊C6/He3 → C2 ⊆ Aut C32 | 18 | 6 | C3^2.28(C3^2:C6) | 486,7 |
C32.29(C32⋊C6) = C3.3C3≀S3 | φ: C32⋊C6/He3 → C2 ⊆ Aut C32 | 54 | 6 | C3^2.29(C3^2:C6) | 486,8 |
C32.30(C32⋊C6) = (C3×He3).C6 | φ: C32⋊C6/He3 → C2 ⊆ Aut C32 | 54 | 6 | C3^2.30(C3^2:C6) | 486,9 |
C32.31(C32⋊C6) = C32⋊C9.C6 | φ: C32⋊C6/He3 → C2 ⊆ Aut C32 | 54 | 6 | C3^2.31(C3^2:C6) | 486,10 |
C32.32(C32⋊C6) = C33.(C3×S3) | φ: C32⋊C6/He3 → C2 ⊆ Aut C32 | 54 | 6 | C3^2.32(C3^2:C6) | 486,11 |
C32.33(C32⋊C6) = C32⋊2D9.C3 | φ: C32⋊C6/He3 → C2 ⊆ Aut C32 | 54 | 6 | C3^2.33(C3^2:C6) | 486,12 |
C32.34(C32⋊C6) = C33⋊1C18 | φ: C32⋊C6/He3 → C2 ⊆ Aut C32 | 18 | 6 | C3^2.34(C3^2:C6) | 486,18 |
C32.35(C32⋊C6) = C33⋊1D9 | φ: C32⋊C6/He3 → C2 ⊆ Aut C32 | 18 | 6 | C3^2.35(C3^2:C6) | 486,19 |
C32.36(C32⋊C6) = (C3×C9)⋊C18 | φ: C32⋊C6/He3 → C2 ⊆ Aut C32 | 54 | 6 | C3^2.36(C3^2:C6) | 486,20 |
C32.37(C32⋊C6) = (C3×C9)⋊D9 | φ: C32⋊C6/He3 → C2 ⊆ Aut C32 | 54 | 6 | C3^2.37(C3^2:C6) | 486,21 |
C32.38(C32⋊C6) = C9⋊S3⋊3C9 | φ: C32⋊C6/He3 → C2 ⊆ Aut C32 | 54 | 6 | C3^2.38(C3^2:C6) | 486,22 |
C32.39(C32⋊C6) = (C3×C9)⋊3D9 | φ: C32⋊C6/He3 → C2 ⊆ Aut C32 | 54 | 6 | C3^2.39(C3^2:C6) | 486,23 |
C32.40(C32⋊C6) = He3⋊D9 | φ: C32⋊C6/He3 → C2 ⊆ Aut C32 | 81 | | C3^2.40(C3^2:C6) | 486,25 |
C32.41(C32⋊C6) = C3×C32⋊D9 | φ: C32⋊C6/He3 → C2 ⊆ Aut C32 | 54 | | C3^2.41(C3^2:C6) | 486,94 |
C32.42(C32⋊C6) = C3×C33⋊C6 | φ: C32⋊C6/He3 → C2 ⊆ Aut C32 | 18 | 6 | C3^2.42(C3^2:C6) | 486,116 |
C32.43(C32⋊C6) = C3×He3.S3 | φ: C32⋊C6/He3 → C2 ⊆ Aut C32 | 54 | 6 | C3^2.43(C3^2:C6) | 486,119 |
C32.44(C32⋊C6) = C3×He3.2S3 | φ: C32⋊C6/He3 → C2 ⊆ Aut C32 | 54 | 6 | C3^2.44(C3^2:C6) | 486,122 |
C32.45(C32⋊C6) = C33⋊C18 | φ: C32⋊C6/He3 → C2 ⊆ Aut C32 | 54 | | C3^2.45(C3^2:C6) | 486,136 |
C32.46(C32⋊C6) = C33⋊D9 | φ: C32⋊C6/He3 → C2 ⊆ Aut C32 | 81 | | C3^2.46(C3^2:C6) | 486,137 |
C32.47(C32⋊C6) = He3⋊C18 | central extension (φ=1) | 81 | | C3^2.47(C3^2:C6) | 486,24 |
C32.48(C32⋊C6) = C3×C32⋊C18 | central extension (φ=1) | 54 | | C3^2.48(C3^2:C6) | 486,93 |
C32.49(C32⋊C6) = C3×C3≀S3 | central extension (φ=1) | 27 | | C3^2.49(C3^2:C6) | 486,115 |
C32.50(C32⋊C6) = C3×He3.C6 | central extension (φ=1) | 81 | | C3^2.50(C3^2:C6) | 486,118 |
C32.51(C32⋊C6) = C3×He3.2C6 | central extension (φ=1) | 81 | | C3^2.51(C3^2:C6) | 486,121 |